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A STUDY OF TBE STA131HTY OF THE INCOMPRESSIBLE

BOUMDARY LAYER (3IVINFINITE WEDGES

By Neal Tetervin

The flow over infinite wedges is investigated theoretically to test
a conclusion previously reached by the use of Schlichting’s approximate
method for the calculation of the laminar boundary Layer; namely, that
in a region of falling pressure a thick velocity pxmfile can be more
stable than a thin profile although the veloci~ at the edge of the
boundary layer and the pressure gradient are the same for both profiles.
By the use of the velocity profiles obtained by Hartree from a numerical
solution of the boundary-layer equations for wedge flows and by the use
of Lin’s rapid method for the calculation of the critical Reynolds num-
ber of a velocity profile, the result is obtained that a thick velocity
profile on one wedge can be more stable than a thinner profile on a
wedge of clifferent angle although the velocity outside the boundary
kyer and the pressure gradient are the same for both profiles. This
result agrees with, and hence confirms, a conclusion reached by the use
of Schlichting’s a~roximate method.

The investigation also leads to the inference that the calculated
effects of a
on the local
by replacing
files by the

change h boundary-layer thickness on the stability and
roughness Reynolds number should be essentidd.y unchanged
the Schl.ichtings~le-parameter family of velocity pro-
Hartree single-parameter family of velocity profiles.

rNTRoDucmoN

Experimental investigations have shown that large extents of laminar
flow can be obtained on airfoils by making the pressure decrease along the
surface in the direction of flow, by drawing part of the boundary layer
into the airfoil interior either through a porous airfoil surface or
through slots cut into the surface, or by a combination of these methods.
The experiments,however, mike it clear that, to avoid early transition
to turbulent flow, the surface must be free of noticeable roughness par-
ticles W other departures from smoothness.

-——— —-————— ——— —. .—— .—
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The indications are that the disturbing effect of a roughness par- .
title can be decreased by an increase in the thickness of the boundary
layer● An increase in boundary-layer thickness, however, increases the
boundary-layer Reynolds number and, if the shape of the velocity profile .
is unchanged, decreases the ratio of the local critical Reynolds number
to the local boundary-layer Reynolds number. The assuption is made that
the ratio of the local critical Reynolds ntier (a function of the shape
of the velocity profile only) to the local boundary-layer Reynolds num-
ber is a measure of the stability; the stability decreases as this ratio
decreases. For a fixed velocity-profile shape, the stability of the
boundary layer thus decreases as the thichess increases.

The shape of the velocity profile and the thickness of the boundary
layer at a point on a porous or nonporous surface with an arbitrary pres-
sure distribtiion can be calculated approxinmtely by the Schlichting
method (ref. 1). This method states that on an impervious surface the
shape of the velocity profile is determined by the local effective pres-
sure gradient; this gradient is directly proportional to the product of
the actual pressure gradient and the square of the boundary-layer thick-
ness. It is apparent, therefore, that in a region of falling pressure
the Schl.ichtingmethod predicts that an increase in boundary-layer thick-
ness increases the effective pressure gradient snd thus results in a
more convex veloci@ profile. Because the increase in convexi~ is known
to imply an increase in the critical boundary-layer Reynolds number, it
would appear that an increase in boundary-layer thiclmess could increase
the local critical Reynolds number more than the local boundary-layer
Reynolds number.

The computations of reference 2, which were made to h%stigate
.

this possibility, led to the result that where the pressure decreases
along an impermeable surface = increase in boundary-layer thickness
at a petit can, because of the resulting increase in effective pressure

-~t, c=e the velocity-profile shape enOU@I to increase the ratio
of the local critical Reynolds numiberto the local boundary-layer Reynoliis
number, and hence ticrease the stability.

Because the results of reference 2 follow from the Schlichting method,
an approximate method, it is desirable to examine the available exact
soltiions of the boundary-layer equations to determine whether solutions
exist that can be used to test the results of reference 2. The exact
solutions of the boundary-layer equations, however, are few, and the only
solutions that were found suitable for use as a test were the soltiions
for the flow over inftite wedges.

The method by which the wedge flows are used to test the results of
reference 2 makes use of the fact that the Schlichting method states that
the shape of a velocity profile is completely determinedly the local
value of the nondimensional pressure gradient. The previous history of
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the boundary kyer enters only intiectly. Therefore, the result of
~eference 2 can also be stated in a different manner. Thus, consider
two incompressible flows with the same kinematic viscosity and let one
flow contain a point such that the velocity outside the boundary layer
and the pressure gradient along the surface are equal, respectively, to
the velocity outside the boundary layer and to the pressure gradient at
a point in another flow. Then, if the boundary-layer thickness is not
the same at the two points, the thicker boundary-layer velocity profile
can be the more stable one.

In the present investigation a confirmation of this conclusion is
sought by exmining the exact solutions of the boundary-layer equations
for wedge flows, the special set of flows in which the velocity outside
the boundary layer varies as the distance from the stagnation point
raised to a power. Numerical solutions of the boundary-layer equations
for these flows have been givenby Eartree (ref. 3).

Whether the results of reference 2 are always valid is not
tested in the present work because the wedge flows satisfy a basic
assmption of the Schlichting method; namely, that the velocity profile
is a single-valued function of the local effective pressure gradient.
Therefore, if in certain cases the rate of change of the velocity pro-
file along the surface would make inaccurate the assumption that the
velocity-profile shape depends only on the local effective pressure
gradient, significant errors might be introduced into the results of
reference 2. These errors cannot be uncovered by the use of the wedge
flows. The wedge flows consequently provide only a partial test of
the results of reference 2.

In the present investigation information is also obtained concerning
the effect on the conclusions of reference 2 of replacing the Schlichting
single-parameterfsmily of velocity profiles by the Hartree single-
parameter family of velocity profiles. This portion of the investigation
is desirable because the critical Reynolds number is sensitive to the
shape of the velocity profile. An accurate numerical calculation, based
on Lin’s rapid method, is made of the critical Reynolds nunibersof all
the Hartree velocity profiles. The present investigation is restricted
to the case of no flow through the surface.

SYMEOLS

constant, equal numerically to velocity at Z = 1

——.— — ——. —.-.——— --——.—–— —
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c@cl)c2 coefficients in expression for g

E reference length

F function of Y

6
g== 7 Co + CIK+ C@2

~~
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.

Schlichting velocity-profile shape parameter

velocity in direction of Z

velocity at outer edge of boundary layer

reference velocity (velocity at distance 6 from apex of
reference

velocity of

velocity at

wedge)

disturbance in boundary layer

7 = ~ with roughness particle absent

reference Reynolds nmiber,
/

co; ;

critical Reynolds nwiber, value of ~ at which a snd2.

disturbance is neither damped nor amplified .

.

—
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x=$
c

Y

ii

a

Subscript:

w

roughness Reynolds nuniber, kq;

velocity through surface, positive outward

distance along surface, measured from stagnation point

distance normal to surface, positive outward

‘r ii
nondimensional distance from surface, — —

& ~

parameter

value of parameter @ for reference wedge

J
al

displacement thickness,
o

a measure of boundary-layer

()1 )%7.-

thickness

momentum thickness of boundary L3yer,
[~~ -$?

function of Y

stream function

kinematic viscosity

angle between walls

at surface

of wedge, radians

5

Primes denote differentiationwith respect to Y; barred quantities
are dimensional.

_ ——-.—..—— — —— —— ——



6 NXA TN 2976

ANALYSIS

Comparison of Wedge Flows

The first portion of the present investigation is restricted to
those incompressible landnar flows for which the velocity outside the
boundary layer is related to the distance from the stagnation point by
the equation

-1
.-2-P

fi=ax

which is obtained from reference 4, pages 139 to
notation of the present paper. There is no flow

(1)

142, but put in the
through the surface

in the present analysis. For P > 0 the flow is that over the inner

or outer face of an infinite wedge with an angle Z% between the walls
(fig. l(a)). The rektion between c% and the parameter p is

a Y@=—
2

.

This relation also occurs, h a different notation, on page 3 of refer-
ence ~. Only values of p less than 2 have physical significance. For
(3<O (fig. l(b)) the flow begins at a value of x greater than zero o
with a boundary-layer-profileshape that depends on the parameter p.

In the wedge flow-definedby equation (1) the velocity 6 and the

velocity derivative ~ are single-valued functions of Z. Consequently,
&

two points with equal 8 and ~ cannot be found on the same wedge.
&

If, however, two wedges with different angles are considered, and if the
velocity at a point on one wedge is properly related to the velocity at
a point on the other wedge, then two points can be found, one on each

dtiwedge, with the same fi and ~.
ax

= order to ftid the relation between the wedge angles and the two

points, one on each wedge, that have equal D and ~, let

(2)
.

—- —______ .———— . . . . . . . .- ——
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S,na

gradient, respectively,

7

(3)(:)%=(:)X,
are the nondimensional velocity and velocity

in one flow at x =
()

~,~d %1 ~d :x ~e

1
the same quantities in the other flow at x = xl. The reference veloc-

ity fio and the reference length ?5 are the same in both flows. The

reference veloci~ 60 can be chosen as the velocity at a distance ~

from the apex of a fixed reference wedge of included @e Ycpo. The

quantity ~ (eq. (1)) has the value & for the reference flow and it is

found from fro, ~, and ~ by the use of equation (l):

The quantities to, E, and ~. are arlitrary but when once chosen are

fixed.

For ~ = pl, equation (l)becomes

‘or

PL

.

(4)

——.———.— . . . .— —-—— .
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where

For p = f32, equation (1) becomes

(5)

where

The condition that ~ at :1 be equal to U at ~ (eq. (2)) is

expressed by equating equations (4) an?i(5):

PL $2
~—

alxl = %22-@

The requirement that ~
dti

at %1 be equal to ~ at Z2 (eq. (3)) is
(3x

()expressed by calculating ~ from
ax xl

()dU calculated from equation (5) .
# z%

2(&l)

eqmtion (4) and eqwting it to

The result is

2(%-1)

(7)



WA TN 2976 9

When equation (7) is divided by equation (6) the result is

(9)

where, in order for equation (3) IxI be satisfied, ~ and @ mustbe

either both positive or both negative. Thus, Uand~at .=%,

ina flow with p= * smd a = ~, are equal, respecl%ely, to U

and ~ at
ax

in a flow with

is obtained by
tion (7). The

P’13~tia=a1. The relation between %da2
the use of equation (8) and either equation (6) or equa-
result

%2=

Consequently, in

canhavetiand~
dx

is

2(P1-*)
Pa

()@-91.)(2-*) q 2- p2 2-%alxl ——
P22-P1

(9)

the flow over infhdte wedges a point on one wedge

dtiequal, respectively, to ~ and ~ at a petit on

a wedge of different angle. The arbitrary quantities al, xl, PI,

and ~ determine ~ and ~ by equations (8) and (9). Fixing

the arbitrary quantity al is equivalent to

in the flow for which @ = ~. The quantity

is determined by equation (9); the quantity

fi/fioatZ=E on the wedge with p = %“

f- ti/fioat ; = E

~ is not arbitrary but

a2 is the value of

— _.—.—— —
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Stability of Lam3nar-@ndsry-Iayer

Velocity Profiles on Wedges

The assumption concerning the stability of a laminar-boundary-layer
velocity profile is the same as in reference 2, namely, that the ratio
Rec/Re at a distance x from the stagnation point is a measure of the

stability of the boundary layer at that value of x and that the boundary
kyer becomes more stable as the ratio Rec Re increases. In order to

/
compare the stability of a velocity profile at x = ~ with the sta-

bility of a profile at x = xl, it is necessary to find Re and Rec

at both xl and ~.

In order to obtain R6 the definition for ~ is used; the defini-

tion is

The velocity C is obtained from the relations

(lo)

(n)

which are from reference 4, pages 139 to 142, but the notation has been
changed to that of the present paper.
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The result is

.

where the function
~. 139 to 142):

l-l

ii 2-%’=az (lZ!)

F(Y) satisfies the differential equation (ref. k,

and the boundary conditions

F’ =0, F=O F’+1

When @ = O, equation (13) becomes the Blasius eqyation for the flow
over a flat plate (ref. 4, p. 135). When equation ()2) is used with
equation (1) in dimensional form,

L
U . -&2-p

(14)

the result is

ii
–=F’
c

(15)

By making use of equations (I_l),(14), and (15), the expression for 6
can be written as

(I_6)

—.- —... —._- .._
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The expression for Re then is

or

From equation (1) it folJows that

Therefore:

Ux. P IF_— .
2 -@dU—

dx

Expression (17) for R, can thus be written as

(17)

.

.

.

—--
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J
03

The integral F’(1 - F‘)dY, a function of p, was calculated from
o

table II of reference 3 by use of Simpson’s rule (ref. 6, pp. 120
to 122). U the entries in the table for a specific value of p were

used to get the integral for that value of p. The function %

r

&Rc

~

J

ax
is shown in figure 2 and the integral ‘F’(1 - F’)dY is given in

o

table I. The inte~l
J

m (1 - F t)dY, related to the displacement
o

thickness :* by the equation

is also given in table I.

In order to find the expression for WC, the conclusion of refer-

ence ‘7that the critical Reynolds number of a velocity profile depends
only on the shape of the velocity profile is used. For wedge flows the
shape of the velocity profile depends only on the value of the parsm-
eter p (see eq. (13)). Therefore, the critical Reynolds number NC

depends only on ~:

Rec = R@

The critical Reynolds nuniberis calculated by Lin’s rapid method
(ref. 8). The critical Reynolds nunbers for some of the velocity pro-
files given by Hartree in reference 3 have already been calculated by
L&’s rapid method and are given in figure 2 of reference 9. Because
only the ftist significant figure of the critical Reynolds nmber can
be read without estimation from this figure and because critical
Reynolds nuriberswere calculated for less than half of the profiles
given by Hartree in reference 3, the critical Reynolds nuuibersare com-
puted in the present work for all the Hartree profiles.

_–_. —.— ——- -——————— ——————-—
. . — --.-——
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Lin’s simplified formula for Rec is .

(19)%c=

which is taken from reference 8 but has been put in the notation of the
present paper.

This formula is to be put h a form that contains the variables F
and Y of equation (13). me use of equations (IJJ, (14), (15), and (16)
leads to

()a;

J
w

_ . F,, F*(1 -F’)dY (20)

az o

e

The term ~/fi in equation (19) is the value of /iiE for which

the relation

.

(a)
ii—

6_

(from ref. 8) is satisfied.

From equations (11), (14), and (16) the relation

(22)
G J

co

F’(1 - F’)dY
o

is obtained.

,



.
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By using equations (20) and (22) the relation

is obtained.

IThe equation for & fi (eq. (21)) can now be written as

~w!l

(?
FIFII1

.flv” 3 -——=0.58
F’ (F!!)3

and the equation for I$3c (eq. (19)) can be Mitten as

J~xwtl mF’(1 - F’)dY

Re = o
c

(FC1)4

where Fc’ is the value of F‘ for which equation

15

(23)

(24)

(23) is satisfied.

The values of Fw” given in table II were taken from Hartree
(table II of ref. 3, where Fw” is called y“(0)). The integral

J
.m

F!(1 - F1)dY has already been computed (see eq. (18) and table I).
o

A detailed description of the computation of FC1 is given in the

appendix. For @ > -0.14, numerical differentiation of Hartreels tab-
W values of F’ (y’ in Hartree’s notation) was not used to find F“
‘and F’” in the equation for Fc’ (eq. (23)). ~Instead, the func-

‘tion F’ was expanded from Y = O in a Taylor’s series and the deriva-
tives of F’ were found by differentiating the series. This procedure
is believed to result in more accurate Vaiues of F 1c j S@ hence of Ret)
than could have been obtained by numerically differentiating Hartree’s
tabular values to find F“ and F“f., The variation of Rer with j3,

calculated by the equation for Rec (eq. (24)), is shown ~ figure 3.
~,

The values of Rec are also given in table II. ,

—..—_— —- .-—-. .-— -
,,
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The ratio Ren/~ can now be found by dividing equation (24) by
LI -

hR(3Cu+% ~
equation (18); the result, — — s shown as a function of p in

%
dU ‘

z

figure 4. Figures 2 and k can be used to determine whether the flows

defined by equation (1) contain points with equal U and ~ and with

the property that the point with the larger value of f3 has the larger
value of ~c/~; the value of Rc is the same for all the flows. Fig-

.*T
ure 2 shuws that when two points have equal values of Rc, U, and ~

but different values of p, the point that has the larger absolute value
of f3 has the larger value of ~. It is recalled that because of

equation (3) both values of p have the same si~. Figure 4 shows that

& the value of %c/%for points with the same values of Rc, U, and

increases with p for p> O.0~. Therefore, for p > 0.05 the point
with the larger value of ~ has the larger value of ~J~; thus, of

‘u in flows with equal Rc, thetwo points with equal values of U and —
ax

point with the larger value of e can have the more stable velocity pro-
file. The exact solutions of the boundary-layer equations for a special
type of pressure distribution thus confirms result of reference 2.

Comparison of Predictions of

Profiles With Predictions

The purpose of the second part

a Metlmd 13asedon the Hartree .

of the Schl.ichtingMethod

of the present investigation is to
determine whether replacing the Schlichting single-parameterfamily of
velocity profiles (ref. 1) by the Hartree single-parameterfamily of
velocity profiles (ref. 3) would leave the conclusions of reference 2
essentially unchanged.

The investigation is made by first determining whether or not an
approxhate method based on the Hartree velocity profiles predicts that
an increase h boundsm-lamr thimess alone at a Po~t ~ ~~ease
the

for

the

the

stability of the b&n&ry layer at that point. ‘The values of Rec

the Ha?.’treeprofiles are then compared with the values of Rec for

Rec
corresponding Schlichting profiles, and the curve of —

K

J for
% dU

G

Hartree profiles is compared with that for the Schlichting profiles.

.

\ ,,

—.
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Of interest also is a comparison of the rate of change of the velocity-

fi

%. u
profile shape parameter and of the stability psmameter —

%
~ with

IdUG
change in boundary-layer thickness. Finally, the rate of chsmge of the
local roughness Reynolds number with change in boundary-layer thickness
is calculated for the Hartree profiles and compared with that for the
Schlichting profiles. In order to set up a method based on the Hs.rtree
profiles, only the boundary-layer momentum equation (ref. 4, p. 133) and
equation (18) need be used. Equation (18) states that the local value

of & dete~es the local ~ue of @c positive values of ~

occur for positive values of

determines the local state of
the Hartree profiles is given

du—. The determination of f3 completely
dx
the boundary layer. A method based on
in references 10 and Il.

In order to determine whether or not an approximate method based
on the Hartree velocity profiles predicts that an increase in boundary-
layer thickness alone at a point can increase the value of ~c/~ at

that point, only figures 2 and 4.needbe used. In figure 2 is shown the
Re

connection between f3 and —0 the figure shows that f3 increases

r

U?RC‘

I
%ir
%

as %— increases when p is positive. Therefore, @ increases

L

U2RC

I%
as e increases, when @ is positive and Rc, U, and ~ are fixed.

UA

Figure 4 shows

for p>O.05

.
increase in e,

r%)c u c
how the stability parameter — — depends on p;

% 1%1

rR3cuc
an increase in f3 increases — -. Hence, an

%
g

I

in ~, and consequently, for f3>0.05, in an

results h an increase

increase in ~c ~. On
/

—.—.— — —— —.. -–.— .
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the other hand,
0<~<0.0~ a

the conibinationof figures 2 and
small increase in e results in

4
a

This %ehavior is the same as that found in reference 2.

NACA TN 2976

shows that when

/
decrease in Rec Re.

r%c -c ObtitiedIn order to compare the cmves for WC and — —
% 11=1

“ Vld’cl
in reference 2 as
.
eter K with the

ent investigation

functions of the Schlichting velocity-profile parsm-

r

‘Qc &Rc
curves for Rec and — — obtained in the pres-

11Re dU
z

as functions of p,
a parameter called ~ by Schlichting
The parameter k is the value of the

both K and @ are replacedby
(ref. 1) and k in reference 2.
nondimensional pressure gradient

(ref; 2):

R(22
k= uldU

Rc &dx (25)

The relation between f3 and k can be obtained by combining equa-
tions (18) and (25); the result is

[. 1
2

k=
~1

‘F’(1 - F’)dY

The relAion between K and k is (ref. 2)

k=#’(K+l) (kl = O) (27)

Therefore, the value of p and the value of K that occur together for
any value of k satisfy the equation obtained from equation (26) and
equation (27); thus,

[ 1#(K+ l)-~ ‘F’(l-F’)dY 2=0
o

-. —
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where

19

.

.

.

g= Co+ CIK+C#

The values of Co, Cl, and C2 are given in reference 1. The values

of p and K that occur together are therefore given by the equation

p

2

(Co+ CIK+ C#2)2(K+ 1) - P m

1

F’(1 -F’)dY =0 (28)
o

For each value of ~ for which Hartree gives a velocity profile (ref. 3)
the corresponding value of K was found from equation (28) by a process
of successive approxtition. The variation of p and K with the non-
dimensional pressure gradient k is given in table III and in figure 5.
Figure 6 gives the variation of WC with k for the Ha&ree profiles

and for the Schlichting profiles.

F

Rec U?RC
Figure 7 shows how — — for

% dU
z I

both the Hartree and the Schlichting profiles depends on k. Because
the abscissa k in figures 6 and 7 is a function of p alone, fig-
ures 6 and 7 can also be interpreted as a comparison between the exact

i

ReCU?RC
values of NC and — — for wedges and the approximate values

%
dU

h’

z I
‘ec Rc

of ~c and —
% m

calculated for these wedges by making use of

x
Schlichting’s

In order

parsmeter with change in boundary-layer thickness, depends on p, eqw-

tion (18) is used.

method (ref. 1).

to find how d~/dRej the rate of change of profile shape

83
ap—=
bRe

.

.

J
m

rmFl(T-F~)dY $0

F’(1 - F’)dY+:

d)

(29)

.——.— .—— —. -—— —-
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J
al

The quantity F’(1 - F’)dY
o

has already been calculated. In order to “

w

calculate $ r( F‘)dY, a table of divided &if’ferences was formed
.

F’l -
QP do

with ~ as the independent

was found from the table by

reference 6. The function

variable.

use of the

R&&is

w

The derivative ~
J

F’(1 - F’)dY
*O

fo~ of example 4, page 217 of

shown in figure 8. In the same

~K
figure is shown ~ —

%
for the Schlichting profiles, taken from refer-

aKence 2. Although the ratio of ~ ~ to 1$ ~ becomes
% %

large as k

departs from

is about the
the range of

zero, the rate of change of

same for the Schlichting and
k; thus

Hartree profiles for moat of

.’M5)=%’H3)Z:
d% ak—

but

therefore

(Rc, U, and ~ fixed)
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alla

a

.

(r)%IC *RC

‘%- q

%;=

(r)

%= U2R,

‘r ~
Because figure 7 shows

W

Hartree and the Schlichting velocity

(?r)Rc‘f~
2k (30)

to be about the same for both the

profiles over most of the range of k,

r%C NRC -
it follows from equation (30) that the rate of change of — —

% IIdUz
with 0 is also about the same -forthe Hartree and Schlichting profiles.

= 0.015, however, there are differences;-t-tideriva-

is positive for the Hartree profiles for values

of k for which it is negative for the Schlichting profiles. .

“Theeffect of an increase ti boundary-layer thickness on the rough-
ness Reynolds number Rh is o%tained by substituting the expression

Fw”
T

F’(1 -F’)dY
o

for the term f(K) in equation (16) of reference 2. The equation

Re aRh forfor —
Rh ~

parallel to that

the Hartree profiles becomes, after a development

of reference 2,

—. .—. .C. .———. —
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~ ~Rh
Figure 9 shows how — — varies with the nondimensional pressure gra-

.

Rh a%

client k for both the Hartree and the Schlichting velocity profiles;
the values for the Schlichting profiles are taken from reference 2. The
use of either the Hartree or the Schlichtin.gvelocity profiles leads to
the conclusion that an increase ti boundary-layer thickness decreases the
roughness Reynolds nuniber.

&e information contained in figures 6 to 9 indicates that a method
based on the H&rtree profiles should predict essent~ the same effects
of an increase in boundary-layer thickness as the calculations of refer-
ence 2, which made use of the Schlichting methcd. For example, a calcu-
lation nmde by the Schlichting method predicts that if the value of 0
at 35 percent of the chord from the leading edge of the NACA 64AO1O air-

foil at a Reynolds nuniberof 107-is multipliedby 3.45, the value of ~

is increased from l,221to 4,208 and the value of ~JRe is increased

from O.239 to 1.0 (see p. 23 of ref. 2). A calculation made by the use
of the information for the Hartree profiles in figure 7 predicts that
this value of 0 should be multipliedby 3.27 to increase

/‘ec %

from 0.210 to 1.0; the value of Re is increased from 1,221-to 4,000.

~valueof {~~ at this position of the airfoil for Rc = 107 is

‘)equal to 14,260.

DISCWSION

The numerical solutions of the boundary-layer equations for the
flow over infinite wedges are used to show that a thick velocity profile
on one wedge can be more stable t- a thin profile on another wedge,
although the veloci~ outside the boundary Layer and the pressure gra-
dient along the surface are the same for both profiles. A result of
the calculations of reference 2, which were basal on the approximate
Schlichting method, is thus confirmed for a special type OR flow.

It is noted, however, that the wedge flows definedby equation (1)
satisfy a basic assumption of the Schlichting method, namely, that the
velocity-profile shape at any point on the surface, for no flow through
the surface, is determinedly the value of k at that point. Equa-
tion (26) shows that for wedge flows the shape of the velocity profile

—.
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is indeed a function of k only. For these flows k is Mependent
of x and depends only on the wedge angle; for a fixed wedge angle there
is thus no change in k or in velocity profile along x. On the other
hand, in regions in which k varies rapidly along the surface and in
which, consequently, the basic assumption of the Schlichting method that
the velocity-profile shape depends only on k is not satisfied, the
predictions of the Schlichting method will probablybe less precise than
for the wedge flows. For example, a discontimi~ in the distribution
of k cannot result in a discontinuous change in the shape of the
velocity profile. The profile shape predicted by the Schlichting method
can, however, be expected, in a region of falJing pressure, gadually to
approach a shape that is in the neighborhood of the correct one as the
distance downstream from the discontinuity in k is increased.

The result of the second portion of the analysis is that a method
for the calculation of the boundary layer based on the Hartree profiles
should indicate essentially the same effects of an increase in boundary-
la.yerthi@ness as the calculations of reference 2, which were based on
the Schlichting method. This result makes the conclusions of reference 2
appear to be less dependent on the particular single-parameterfamily of
velocity profiles chosen by Schlichting; one of the weahesses of the
analysis of reference 2 is that it is based on a particular single-
parameter family of velocity profiles and that 1$ is sensitive to

c
the shape of a velocity profile.

CONCIJ~IONS

The result is obtained’that in flows over infinite wedges cases
occur for which a thick boq-layer velocity profile on one wedge is
more stable than a tkbner profile on a wedge of different angle, although
the velocity outside the boundary layer and thq pressure gradient are the
same for both ”profiles. This result confirms a conclusion previously
reached by the use of Schlichthg’s approximate analysis, namely, that’
in a region of falling pressure the stability of a thick velocity profile
can be greater than that of a thin profile when the velocity at the edge
of the boundary layer and the pressure gradient are the sam@ for both
,profiles.

The investigation also leads.to the inference that the calculated
effects of a change bboundary-layer thickness on the st~bility smd on
the local roughness Reynolds number shouldbe essentially unchangedby

.

-.— ..—.. —...— ..—. _— —— —. ~. ._ ._ —.—.——
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replacing the Schlichting single-parameterfamily of velocity profiles
by the Hartree single-parameterfamily of veloci~ profiles.

Qw@fw A-=utic~ hlmatory,
National Advisory Comnittee for Aeronautics,

-ey Field, Vs., lky 11, 1953.
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CMCUI@CIONOF FC’ MID 1$
c

In order to compute Fc’ it is necessary first to compute F“
~ Fl~l over a range of Y large enough for eqpation (23) to be
satisfied at one point in this range. The computation of F“ and F’”
was made by first expanding the function F’ in a Taylor’s series from

Y = O; the series, to Y13, is

14 F#Yn-l
F’ =

End (n-l)!
(32)

where Fwn means the nth derivative of F at Y = O. The derivative

of the series for F’ results in the series for F“:

14 Fw~-2
Fn =

.x~2 (n-2)!
(33)

and the derivative of the series for F“ results in the series for F’”:

14

E

Fw~@3
Flfl =

n=3 (n - 3)!
(34)

The coefficients Fwn are obtained by successively differentiating equa-

tion (13) and using the boundary conditions at Y = O. Thus, directly
from equation (13) end the conditions

Y=o F=O F’=0

————— ..—.—— --
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there results:

Fw~” = -~

The first derivative of equa,tion(13) is

The boundary

9+

conditions at

~llt + FIF” 1 -( 2p) =

Y = O then lead to

Fm=o
w

o

This process

coefficients

was repeated over and over until Fwuv was obtained. The

are listed in table IV. The quantity Fw” depends only

on p and is listed in table II; these values of Fv” were taken from

reference 3 (where the syaibol y“(O) was used hstead of Fwn).

The series (32), (33), and (%) were used to calculate F‘, F“,
and F’m by using the value of Fw” given by Hartree (ref. 3) for

each value of p. For @ ~ 0, the series (32), (33), and (34) were
assumed to be valid representations of F’, F“, and F’” from Y = O
to the largest value of Y at which the magnitude of the last term in
the series for F’” was less than 0.00005. For p = -0.10 the cri-
terion was relaxed to allow 0.00008, @ for P = -0.14 the value 0.00013
was allowed. For values of Y less than the largest values of Y at
which these re

r
ements were satisfied, the values of F’ calculated

by the series 32) did not show a consistent departure from Hartree’s
tabulated values (ref. 3).

In order to calculate Yc, the value of Y at which eqyation (23)

is satisfied, equations (33) and (~) and the values of Fw” and F’

givenby Hartree (ref. 3) were used to calculate the left-hsmd side of
equation (23), cald.ed q, for a ramge of Y large enough to include
values of @ greater than 0.58. For values of -0.14~ j3~ 2.4, the
computation of Yc and Fc’ then consisted of an iteration procedure

tiwhich Yc was first estimated by applying a divided-difference
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method (ref. 6, ch. 7) to the calculated values of @. A new value
of ~ for this value of Yc was computed by calculating F’, F“,
~ F~ll for this value of Y from equations (32), (33), and (~).
If @ was not equal to 0.58 the procedure was repeated and use was
made of the new values of ~ and Y in the divided-differencepro-
cedure. This iteration procedure resulted in values of Yc for

which @ was equal to 0.5800 t 0.0001 for all values of @ for which

-0.14~ ~~ 2.4. The last iteration for Yc also gave the final ~ue

of Fe’.

For B = -0.16, -0.18, and -0.19 the Taylor’s series is not valid
to Yc. hthese cases the values of F’ in Hartree’s table (ref. 3)

were used to form difference tables. In most cases third differences
were used. These difference tables were used with New-tontsand Gaussl
formulas (ref. 6 pp. 16o to 170) to compute the values of F“ and F“l.
‘l?hevaluesof F~’ and F’l’ computed by the Newton and Gauss formulas .
were smoothed by one application of the 7-point formula on page 278
of reference 6. These smoothed values of F“ and F’” were used with
Hartree’s tabular values for F’ (ref. 3) to compute~. Th.eWue
ofYfor$= 0.58 was then foundby inverse titerpoktion, for which
a divided-differenceformula was used (ref. 6). For this value of Y,
called Yc, the value of F’, called Fe’, was found by interpolation

from the difference tables; third differences were used.

Once Fc’ was calculated, the critical Reynolds number was com-
puted from the equation for Rec (eq. (24)). The variation of NC

with p is shown h figure 3. The values of NC ere also given ~

table 11, together with Hartree’s values (ref. 3) of Fw”. The wues

of ~c in table II are believed to be accurate to about 6 in 10,000

for -0.14 ~~ ~2.4. This estimate of the accuracy is based on an

estimate of the effect on the calculated value of ~c of a small dif-

ference In ~ from 0.5&Xl. For’ f3~ -0.16 the values of Rec are

probably accurate to the number of significant figures given in the
table. These estimates of the accuracy concern only the numerical pro-
cedure and do not include the effects on WC of any inexactness in

Hartree’s values of Fw” or of any inexactness inLin’s fo~(eq. (19)).

In the course of the computations it was noted that the value 0.8860
atx= 1.6 (Hartree’s notation, ref. 3)”and p = 0.5 did not seato
be consistent with neighboring values. An interpoktion which mde use
of the other values in the vicinity gave 0.8760 instead of 0.8860. The
value 0.8760 was used in the computations of the present analysis.

.

-——.- —. --.—— .
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‘lMBLEI

r(03TEEINmGRAMF’l - F’)dX
Jo

VARIOUS VALUES

‘J
w

(1 - F’)dY FOR
o

OF ~

2.4
2.0
1.6
1.2
1.0
.8
.6

●5
.4
●3
.2
.1

0
-.10
-.14
-.16
-.18
-.19
-.1988

J
w

F’(1 - F’)dY
o

0.2149
.2308
.2502
.2760
.2923
.3119
.3358
.3502
.3667
.3858
.4080
.4354
.4695
.5155
.5388
.5523
.5676
.5768
.5852

1m(1 - F’)dY
o

0.4607
.4974
sm;

.6479

.6987

.7638

.8044

.@26

.9109

.9838
1.0803
1. z67
1.4436
1.5967
1.7076
1. 87I2
2.0070
2.3587

.—— — — — —.———
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TK13LEII

TKE QUANTITIES Fw” AND ~c FOR VARIOUS VALUES OF 13

Fw”
P Rf3C

(1)

2.4 1.837 6,590
2.0 1.687 6,209
1.6 1.521 5,728
1.2 1.336 5,002
1.0 I.2326 4,529

.8 1.120 3,%8

.6 .9960 3,132

.5 .9277 2,662

.4 .8542 2,134

.3 ;$77; 1,551

.2 963.0

.1 .5870 470.4
0 .4696 179.5
-.10 .3191 62.3
-.14 .2395 38.4
-.16 .1905 30
-.18 .1285 17
-.19 .085 7
-.1988 0 ------

%rom Hartree’s table (ref. 3).
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. ‘lYiBUIII

THE VELOCITY-PROFILE PARMETER S @ AND K FOR VARIOUS VAjXES

OF THE PRESSURE-GRADIENT P~ k

k P K

0.1108 2.4 -0.4818
.1067 2.0 -.4986
.1002 1.6 -.5237
.09142 1.2 - ●5592
.08542 1.0 -.5839
.07781 .8 -.6159
.06764 .6 -.6597
.06131 ●5 -.6877
.05379 .4 -*72J-7
.04465 .3 +’$
.03329 .2
.01896 .1 -.8934

0 0 -1
-. G2658 -.10 -1.176
-.04064 -.14
-.04881

-1.289
-.16 -1.366

-.05800 -.18 -1.470
-.06321 -.19 -1 ● 543
-.06810 -.1988 -I. 629

——.—.. ..— ..— .—. —— -.-——..—.——
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TAmEIv

COEHICIZM’E IN TEE TAYLOR’S SERIES FOR F’, F“,AtiDF’”

Fwt!t= -$

Fwm = ()

# = -(F1n)2(l - 2P)

Fwm=2F1’’P(2 -3P)

FW~ = -2$%2 - 3f3)

F ~ = (F’1”)3(1- 2@(ll - 10P)w

Fv== -2(Fl”)2f3(k5- 123f3+66~2)

Fvx= U5F1”P2(2- 3P)(8- 713)

Fvn = -(Fl”)4(l- 2f3)pg - 16@(11 -lop) + 14(1- 2B)(4-%] -

16B3(8- 7P)(2- 313)

Fwm = (Fl”)3~lj(37- I@) (45- ~3P + @2) + (1 - 2P)(u - lop)(93- ~~]

Fv~ . -2(Fl”)2P2~6(23- 1oP)(2-3P)(8 - 7P)+

10(13-9P)(45 - I13p+ 66p2)+ 6(27- 2@(1 - 2p)(2-3p~

FW=(Fl”)5{2(28 -UP)(l- 2P)@9-I-@)(H@ +~(1-@&5P] +w

3(139- 136P)(1- 2P)2(IJ-- I@)} + 8Fl”~3[4(28- UP)(8- 7P)(2- 3P)+
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(a) p 20.

—. __ _ m
(b) ~ <0.

Figure l.- Flow over the walls of a wedge.
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“

k

Figure 6.- Variation of the critical boundary-layer Reynolds nuniber Rec

with the nondimensional pressure-gradient parameter k for the

Hartree and the Schlichting velocity profiles. k R02 1 dU=— __ .
Rc U2 dx
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